LIFE HISTORY AND PREDATOR-PREY INTERACTIONS OF THE NEMERTEAN PARANEMERTES PEREGRINA COE

PAMELA ROE ${ }^{1}$

Department of Zoology, University of Washington, Seattle, Washington 98195^{2}
This study concerns the life history of the predatory nemertean Paranemertes peregrina Coe, predator-prey relations of P. peregrina, testing of predator strategy models, and a consideration of the effects P. peregrina has on community structure. P. peregrina occurs from Ensenada, Mexico through the Aleutian and Commander Islands (Coe, 1940), and also in Japan (Yamaoka, 1940). It lives in both muddy bays and rocky intertidal areas, and eats polychaetes (Roe, 1970).

Nemerteans are common in intertidal areas of temperate regions. Most are carnivorous (Coe, 19+3) and, because of their size and abundance, may be important organisms in marine communities. No complete investigation of the feeding ecology of a free-living nemertean has been done, and since the great majority of nemerteans are free-living, such a study should add greatly to the knowledge of the phylum.

Materials and Methods

Three study areas were chosen : two mud flats on San Juan Island, Washington, and the ballast along the ferry landing at Edmonds, Washington.

The study site at Snug Harbor, Mitchell Bay ($48^{\circ} 34^{\prime} 9.5^{\prime \prime} \mathrm{N}, 123^{\circ} 9^{\prime} 48^{\prime \prime} \mathrm{W}$), San Juan Island included the area between -0.2 m and -0.4 m , where P. peregrina was common. (A tidal height of 0 equals mean lower low water, as recorded in the U. S. Coast and Geodetic Survey Tide Tables.) The fanna contained mainly polychaetes, tanaids, and thalassinids, plus much ulvoid algal cover most of the year. Only the superficially dwelling polychaetes, with certain exceptions, were available as prey for P. peregrina, and included the nereid Platynereis bicanaliculata, the hesionid Ophiodromus pugettensis, the opheliid Irmandia brevis, the spionid Scolelepis fuliginosa, syllids, polynoids, and phyllodocids. Polychaetes living in deep tubes included the nereid Nereis zexillosa, lumbrinerids, terebellids, maldanids, glycerids, nephtyids, ariciids, and dorvilleids.

The study area at Garrison Bay ($48^{\circ} 34^{\prime} 57^{\prime \prime} \mathrm{N}, 123^{\circ} 9^{\prime} 17^{\prime \prime}$ W), San Juan Island, Whashington, extended from -0.1 to -0.5 m . Polychaetes and many clams comprised the major infauna and algae were much less common here. Polychaetes included the superficially dwelling P. bicanaliculata, A. brevis, O. pugettensis, syllids, at least five species of spionids, and phyllodocids; plus deeper dwelling N. vexillosa, lumbrinerids, terebellids, maldanids, glycerids, cirratulids, ariciids, sabellids, and oweniids. Aglaja diomedea (cephalaspid gastropod), common at both

[^0]mud flats, attaned high densities in summer and overwintered as juveniles just below the mud surface.

The study area at Edmonds, Washington, ($47^{\circ} 48^{\prime} 12^{\prime \prime} \mathrm{N}, 122^{\circ} 22^{\prime} 56^{\prime \prime} \mathrm{W}$) consisted of boulders 1.5 to less than 0.3 m high, piled along the north face of a ferry lauding. Tide level was from +2.1 m at the top of the highest rock to about +0.2 m at the top of the lowest. Bonlders were covered with a thick coat of Balanus cariosus and Mytilus cdulis. Syllids (Typosyllis sp.) were most common in clumps of larger barnacles, and mussels and spionids (Boccardia sp.) were most abundant in cracks between small barnacles. Other polychaetes included phyllodocids, lumbrinerids, the chrysopetalid Palcanotus chrysolepis, polynoids, and very few nereids.

In Washington lower low tides between September and January occur during hours of darkness; those from April through July occur during daylight hours. February, March and August have both daylight and nighttime lower low tides. Most field work was carried out during lower low tidal periods from April, 1968 through August, 1970.

Densities of active P. peregrina were determined by counting numbers $/ \mathrm{m}^{2}$ in randomly selected (or all) square meters along transects on the substratum surface during the time of maximum nemertean activity (within an hour after the tide recedes). Transects were chosen haphazardly with respect to nemertean densities. If few worms were active, all worms seen were connted and collected. Each month the numbers $/ m^{2}$ of active nemerteans in each of five permanently marked $10 \times+\mathrm{m}^{2}$ mud flat areas were counted to get density measures through time in given places.

In alternate months four $\frac{1}{s} 1 m^{2}$ mud samples from each mud flat were dug, the numbers of P. peregrina on the surface were comnted, then all nemerteans in sieved mud were counted to determine total density. The per cent of active worms was determined by dividing the number on the mud surface by the total number. Since sieving mud was so time consuming, not enough samples were taken to get statistically significant results.

For size-frequency studies, the first 50-100 worms were collected from the density transects each month. In the laboratory their length and width were measured after allowing each worm to extend to its normal crawling length; their sex was determined by observing gametes through the ivory colored venter.

To determine what P. percyrina had been eating, another 50 worms (also along the density transects) were collected each month. After being brought to the laboratory, these worms were immediately isolated into small jars, half full, of clean sea water, and after 48 hours were measured, sexes were determined, and faeces were identified and preserved in 70% alcohol. Faeces of P. peregrina are easily identified bundles of polychaete setae and jaws in mucus.

Nemerteans used for measurement and faecal analysis were returned within a few days to approximately the places within the study areas from which they were collected. Areas were cleared of P. peregrina to study movement and total densities. To measure growth and movements, individuals dyed with neutral red (making the white rentral streak pink) were put into permanently marked areas. Every month the number of marked worms still in or near the given square meter were counted,
collected and measured, and returned to the same $m{ }^{2}$. The ventral streak remained pink for at least eight months.

Population densities of the major prey. Platynereis bicanaliculata, were determined during altemate months at Snug Harbor and Garrison Bay. Mud was collected into numbered jars ($20 \mathrm{~cm}^{2}$ surface area at opening) or plastic freezer containers (surface area $100 \mathrm{~cm}^{2}$) at regular intervals throughout the study area. In the laboratory, the contents of the containers were emptied with sea water into a pyrex dish and agitated until all nereids swam to the surface of the water. They were counted and collected, and nereids from the samples with the most mereids were preserved in 70% alcohol. The preserved nereids were later measured for size frequency analysis.

Other prey species’ densities were determined as follows: specimens of Armandia and spionids were comnted in most of the nereid samples. Very few spionids were seen in these samples, so in August, 1970, all the spionid tubes seen per $1 / 100 \mathrm{~m}^{2}$ while diving at high tide at Smog Harbor were comnted. Nereis verillosa densities were estimated from the mumbers collected in $\frac{1}{8} m^{2}$ mud samples taken for total P. peregrina counts. At Edmonds, barnacles and mussels were scraped off small patches of rock, and in the laboratory the volmmes of the clumps were determined, and they were broken apart and the polychaetes found were comited.

To determine activity periods of P. peregrina dives using S.C.U.B.A. equipment were made at each study area, day and night, and at all tides except lower low tide to see if, and how many, nemerteans were active other than when meovered at lower low tides. The dispersion pattern of P. peregrina was determined by the method described by Pielou (1959), using the formula πD to $=a$.

During several low tides the behavior of the anmals was observed, especially with respect to foraging, feeding, time required to feed, and movements. For behavioral observations artificial mud flats were made in shallow concrete outdoor aquaria. The aquaria were about $1 \mathrm{~m}^{2}$ in size, and each contained a wooden frame about 5 cm smaller per side than the aquarium. Water came through hoses above the aquaria, and a plug at the bottom of each aquarium outside the wooden frame could be pulled for "low tides." Because of the immer frame, water had to percolate through the mud while the mud flat was draining ; it did not simply run off the surface of the mud. Nemerteans responded as it there was a real low tide when water was thus forced down through the mud on its way out. The activity cyeles of individual nemerteans were obsersed in these small mud flats.

Two similar indoor mud flats were also made and kept going for ten months. One contained nereid food for the nemerteans but no "low tides" were made, to determine if P. pergorina would eat under water. The other contained no nereid food and was established to determine how long specimens of P. peregrina can withstand starvation. In both experiments, rumning sea water was used, and no data were collected to determine if nemerteans absorbed dissolved food from the water itself. Nemerteans from each flat were removed once each month, measured, weighed, and then returned. Jaws of nereids that were consumed in the natural 1 al itat of P. pergrina were collected from the faeces and measured using a calibrated compound microscope.

Thabatory feeding experiments were done in two ways. First, adult nemerteans do not feed wery well if simply left in a container with prey ; prey most be placed
directly in front of a nemertean's head before it is recognized as prey. Each day adults were presented with as many nereids as they would eat and results were recorded. Secondly, young nemerteans will eat if enough nereids are included in the container to be detected. For a year three jurnile nemerteans were grown in pint jars with nereids in a refrigerator kept near $7^{\circ} \mathrm{C}$ and the number of nereids eaten was recorded.

Diversity of prey species was calculated as $H^{\prime}=-\left(n_{\mathrm{i}} / \mathrm{N}^{\circ}\right) 1_{11}\left(n_{\mathrm{i}} / N\right)$ (Pielon, 1966). Significant differences in H^{\prime} were detemined by the method of Pielou (1966).

Dietary selectivity was calculated by applying Iviev"s (1961) "electivity coefficient." This coefficient, E, is a ratio of the amount that a food type is eaten to its abundance or avalability, $E=\left(r_{\mathrm{i}}-p_{\mathrm{i}}\right) /\left(r_{\mathrm{i}}+p_{\mathrm{i}}\right)$.

Observations and Results

Population life history of P . peregrina

Lengths of P. percgrina are correlated with dry weight ($r=0.77, P<0.001$), but length \times width (area, m^{2}) is more highly correlated with dry weight ($r=0.93$, $P<0.001$) and this index is the size unit used throughout. Linear regression of length \times width on dry weight is: area $=2.11$ dry weight +50.33 . Figure 1 A and P gives sizes of P. peregrina throngh time at Gurison Bay. Roe (1971) shows sizes of individuals throngh time at Snug Harbor and Edmonds and sizes of Garrison Bay individuals during other months.

Ganctc production. The presence of developing eggs and sperm can be determined $3-4$ months before the gametes are ripe. In all three populations the total number of females significantly ontmmbered the total mumber of males: Snug Harbor, 452 females, 196 males. $\chi^{2}=101.1 . P<0.005$; Garrison Bay, 105 females, 52 males, $\chi^{2}=17.9, P<0.005 ;$ Edmonds, 147 females, 29 males, $\chi^{2}=79.1, P<$ 0.005 . Even during the peak spawning seasons females outnumber males about two to one (Fig. 2 : see Roe, 1971 for more detail). At $S_{n n g}$ Harbor and Garrison Bay part of the population consists of non-ripe animals at peak spawning periods also (Fig. 2 ; Roe. 1971).

Spazning. The major spawning season for all three populations is spring or summer, and minor spawing periods occur thronghout fall and winter in the mud flat populations (Fig. 2 for Snug Harbor; Roe, 1971, for Garrison Bay and Edmonds populations). At Garrison Bay the major spawning period is in April, and a few worms spawn in November (Roe, 1971). At Snug Harbor most spawning occurs in Jume, with some also in November (Fig. 2) : and at Edmonds spawning occurs in March and April only (Roe, 1971). The major spawning season for each population usually lasts about a month: spawning is not higly synchronous within a population; and the dispersion pattern of P. peregrina is random during spawning season.

Eggs and sperm are shed through temporary gonopores along the dorsolateral surfaces of adults. In the laboratory, spawning sometimes resulted in death of the adnlt. Adhults kept after spawning lived for six weeks and then died from poor laboratory conditions.

Coe (1940, p. 286) said, "gelatinous cluster's containing many ova (are) deposited during the warmer months of the year," by P. percgrina. Although spawn-

Figure 1. A) Size-frequency distribution of Parancmertes percgrina at Garrison Bay, September 1968, January 1969, and February 1969. Size class interval is $20 \mathrm{~mm}^{2}$. Number $/ \mathrm{m}^{2}$ is the average total P. percgrina density. N is the number in the sample from which the sizefrequency histogram was drawn. W equals winter recruits. B) Size-frequency distribution of Paranemertes peregrina at Garrison Bay is continued; June 1969, December 1969, and March 1970. Number $/ \mathrm{m}^{2}$ for June 1969 is the average P. peregrina density during low tide. The December 1969 sample includes an area of unusually high density of juveniles, thus increasing the percent in small size categories.

Figure 2. Per cent of the Paranemertes peregrina population at Snug Harbor comprised by males, females, and non-ripe anmals each month. Large arrows indicate major spawning periods; small arrows indicate minor spawning periods.
ing was not observed in nature, the eggs of those that spawned in the laboratory did not form gelatinons masses. Extensive examination of all types of egg masses observed at both Snug Harbor and Garrison Bay showed none to be nemerteans. Single eggs of P. peregrina were also collected in the plankton of Mitchell and Garrison Bays in June, 1969. So, at least in the areas used for this study, P. peregrina spawns eggs and sperm into the sea.

Dezelopment. Eggs are yolly and about 235μ in diameter; with the fertilization membrane and jelly coat, 650μ. They are blastulae in 30 hours. Larvae start swimming within the jelly case after about two days and hatch the third day when kept near $10^{\circ} \mathrm{C}$. In two weeks the accessory stylets and basis rudiment of the proboscis have formed. There is continnons change from a ciliated tear-drop shaped, weakly swimming larva with two anterior flagella to an elongate, muscular, benthic form. Gradually, the tiny worm spends more and more time on the bottom until finally it cannot swin any longer. Larvae can stay in the plankton for at least eight weeks, but develop faster if food is available. The cultured worms started feeding in the laboratory on 3-segmented specimens of Platynereis bicanaliculata (abont 0.2 mm long) when they were about one month old and less than 1 mm in length. Spionid larvae were also offered as possible food, but juvenile specimens of P. peregrina were never observed or induced to eat one. Although larvae were not specifically examined for food, those younger than about four weeks were never seen with any food material in the developing gut. It is assumed that they live on yolk reserves until they start feeding on polychaetes. Young specimens of Nercis verillosa quickly grew too large to be eaten ly nemertean juseniles and showed the typical nereid swimming escape response to P. pergeina (Roe, 1970), even when the nemerteans were still in the flagellated swimming stage. Even as one-month old

Table I
Grozeth of three individuals of Paranemertes peregrina in the laboratory.

Date	Size		Number of animal. measured
	Area ($1 \times \mathrm{w}, \mathrm{mm} \mathrm{m}^{2}$)	Leng 11	
June 23, 1969	0.3 mm , egg diameter		3
August 11, 1969	-	0.15	1
August 21, 1969	-	0.4	1
October, 1969	$<7,6,<7$	0.7, 1.1, 0.7	3
November, 1969	$12.5,13.5,20$	2.5, 2.7, 2.9	3
December 7, 1969	16.5-23.1, 36	3.3, 4, 3.3	3
December 17, 1969	41.6-46.8	5.2, 5.2	2
December 24, 1969	52, 54, 51	5.2, 5.4, 5.1	3
January 15, 1970	46.2, 52, 54	$4.2,5.2,5.4$	3
January 24, 1970	54.9, 58.2, 75	$6.1,6.5,6.8$	3
February 20, 1970	65-70	6.5-7	1*
February 27, 1970	112.5-120	7.5-8	1
March 8, 1970	120	8	1
$\text { March 22, } 1970$	ca. 135	9	1
April, 1970	$\text { ca. } 180$	12	1
$\text { May } 24,1970$	285	15	1
June, 1970	310-350]	14-16	$1^{* *}$

* Largest of three young animals died February 8, 1970; it was already developing eggs when it died. One of the other two died in June, 1970; it quit feeding or growing in February, 1970, and became a ripe male.
** The third animal lived until December, 1970, at which time she spawned eggs and fragmented. In July, 1969, she pinched off part of her tail, so growth was not recorded thereafter.
worms less than 1 mm in length, P. peregrina has the strong food preference for nereids present in the adults; likewise, nereids show the escape response to P. peregrina throughout their lives. That the escape response is species-specific was reaffirmed when 3 -segmented nereids showed aggressive rather than escape behavior toward a 2.5 mm specimen of $Z y$ gonemortes virescens.

Growth. In the laboratory three nemerteans were grown from eggs starting on June 23, 1969, until their deaths (Table I). They exhausted their food supply at the end of August and were not fed again until mid-October. Then they grew about 1 cm in length per month from October through March, 3 cm per month for the next two months, and then stopped. The sole survivor was 15 cm long at the end of a year (Table I). After the initial slow growth when they did not have food, the sizes of these laboratory-grown worms corresponded with the sizes of young in nature during the fall (Fig. 1A, September and 1B, December).

Adult nemerteans can also withstand periods of low food. The 14 nemerteans in the indoor artificial mud flat that contained no nereids generally lost weight and grew smaller each month, but one was still alive after nearly 7 months (October 1 to April 29). The average area decreased from $100 \mathrm{~mm}^{2}$ for 14 worms in October to $58 \mathrm{~mm}^{2}$ for 2 worms in December. Two worms collected in March averaged 74 mm²; they were probably among the largest animals in October. The average weight decreased from 109.3 mg in October to 68.7 mg in December. The two March worms averaged 89.2 mg (Roe, 1971 for details of each month).

Figure 3. Per cent of Garrison Bay Parancmertes percarina population comprised by each year class. Vertical solid lines indicate periods of recruitment and increased density. Vertical dashed lines indicate periods of adult mortality.

Recruitment and age classes. Toung worms produced at the peak spawning periods of April (Garrison Bay) and June (Snug Harbor) are apparent in the fall population. Worms produced during minor fall and winter spawning are easily seen in spring. Since the young are usually lighter in color than adults, the per cent of the population that is light-colored can be used as an estimate of recruitment. At Garrison Bay small light animals comprised 26% of the population in September, 1968, and about 22% in October, 1969. At Snug Harbor recognizable (small. light) young constituted 6.1 and 8.4 per cents for 1968 and 1969 , but the Sung Harbor population also had many small, dark members. Since it was difficult to determine with certainty the ages of the small, dark worms, although in the same size classes as the recognizable pale young, these figures are probably low (see also Roe, 1971).

Juveniles gradually get darker as they grow, and by March or April it is difficult to distinguish them from adults of previous years. Figure 3 shows the proportion of the Garrison Bay population comprised by each year class, from study of nemertean growth rate in the laboratory and that of young nemerteans in nature (see also Roe, 1971).

Life span and mortality. If they survive larval settlement, almost all members of mud flat populations of P. peregrina live about 1.5 to 1.75 years. Worms produced in the spring probably reproduce the following spring; and those produced in winter, the following winter. If a worm spawns more than once, it is probably one that has outlived the average life span. Indeed, at Snug Harbor there is a
refuge near the -0.2 m tide mark where several large, old worms reside, and most worms 15 cm and longer seen in November-December were ripe. Light colored, small, young but ripe worms were also seen at Garrison Bay in the fall.

Mortality of P. peregrina was observed in nature only on very hot days when the lower low tide was just past noon; then only a few nemerteans were dying. Some animals also die after spawning. Size-frequency analyses (Fig. 1A, B) for the Garrison Bay population show sudden decreases in the numbers of large worms in fall or winter. Causes for these mortalities are not known. The gastropod Aglaja diomedea was observed to prey on P. percgrina (see also Gonor, 1964). However, Algaja is only large and common in summer when nemerteans are also large. Even the largest A. diomed ca camot eat an average sized adult P. peregrina; it can only bite off a piece of tail. Aglaja is also active at high tide, when the nemerteans remain underground. It is possible that A. diomedea has an effect on the numbers of small P. peregrina recruited, but it seems mulikely that it has much effect on the adult population. At Garrison Bay 2.7% of the P. peregrina population consists of worms with regenerating posterior ends; at Snug Harbor it is 5.1%, and at Edmonds, 3.5%. These percentages are biased downward, as regeneration was not always recorded, but the numbers of regenerating worms are few. Aglaja does not occur at Edmonds.

Another possible cause of mortality is parasitism by gregarines, although parasitized nemerteans appeared healthy. Twenty-six per cent of the Garrison Bay population had gregarine cysts in the faecal material. At Sung Harbor the average infection percentage determined from faecal analysis was 6.3%; and at Edmonds, 7.95%. In February, 1969, small pieces of gut tissue dissected from 17 Garrison Bay animals showed 88.2% were actually infecter. Stulies on the gregarine life cycle or on how nemerteans becone infected were not done.

Population density. From numbers of nemerteans in twelve $\frac{1}{3} m^{2}$ mud samples, it was estimated that 97% of the worms are active during the peak activity period of low tides in good weather during might tides at Garrison Bay. The total number $/ m^{2}$ for Garrison lay night tides is estimated per month as average density at low tide/0.97 (Fig. 4). In daytime summer low tides, ten samples of sieved mud yielded four inactive P. peregrina; two nemerteans were active in these areas. Because numbers were both low and variable, I was unable to determine with confidence the total number $/ \mathrm{m}^{2}$ for summer months. In spring, when lower low tides are in the afternoon, Garrison Bay nemerteans are not seen on the mud surface at low tide. By June, when these tides are in early morning, large (adult) worms are again seen in abundance (about $3 / \mathrm{m}^{2}$). It is concluded that the nemerteans remain moder the surface in spring since animals in June are adult size (Fig. 1B) and since P. percgrina does not usually move great distances (see section below on movements).

At Snug Harbor 70% of the nemerteans seen during night low tides ($1+\frac{1}{2} \mathrm{~m}^{2}$ samples) and 50% in daytime low tides ($32, \frac{1}{8} m^{2}$ samples) were estimated to be active during peak activity periods of these tides, with total number $/ 1^{2}$ each month being the average density at low tide/0.7 (night tides) or $/ 0.5$ (day tides) (Fig. 5). The summer estimates of the percentage of active worms may be low, as mud was sieved on days when few worms were active. These irregularities should be

Figure 4. Mean densities (number $/ \mathrm{m}^{2}$) of Paranemertes peregrina at Garrison Bay. A) shows fall recruitment of juveniles from eggs spawned the previous spring; B) major mortality period of adults; C) spring recruitment of juveniles from eggs spawned the previous fall; and D) low densities due to animals staying under the mud surface, not mortality. Vertical lines along dashed line are \pm one standard error from the mean. N is the number of $1 \mathrm{~m}^{9}$ quadrats in which Parancmertes numbers were counted. Estimates of total density were calculated only for September 1968 to March 1969.
remembered during consideration of density information. At Edmonds only the numbers of active worms were comited (Roe, 1971).

At Garrison Bay (Fig. 4) and at Snug Harbor to some extent (Fig. 5) densities were highest in late smmmer and in fall, when both adults of the previous year and recruits from the previous spring or smmmer spawning seasons were present. Adults die in late winter (Fig. 3) reducing densities (Figs. 4, 5), but winter recruits add slightly to the populations then (Fig. 1A, B, small individuals seen in spring). At this time there is also replacement of the adult population by the present year's recruits, themselves reaching adult size (Fig. 1A, B) .

Spring and summer are the most stable periods within each year with respect to fensity (Fig. 4) : populations consists mainly of a one-year class (Fig. 5) and there is little mortality then. At Edmonds. such patterns were not determined. The number of active nemerteans depends strongly on weather conditions. Density measures in this higher intertidal area fluctuated too much for patterns to be

Figure 5. Mean densities (number $/ \mathrm{m}^{2}$) of Paranemertes peregrina at Snug Harbor. A) shows fall recruitment of juveniles from eggs spawned the previous summer; B) major mortality period of adults; and C) spring recruitment from fall spawning. N is the number of $1 \mathrm{~m}^{3}$ quadrats in which Parancmertes numbers were counted. Vertical lines along dashed lines are \pm one standard error from the mean.
seen. At Smug Harbor, life history and densities are similar to those at Garrison Pay (Figs. 2. 5 ; Roe, 1971) but show more fluctuations.

Prey densitios

Platynereis bicanaliculata. An annual, P. bicanaliculata, has highly synchronous spawning periods. A few spawned in June, especially at Garrison Bay ; but most of both the Snug Harbor and Garrison Bay populations spawned near August 1 in both 1968 and 1969, at which time there was almost a complete turn-over of each. Young specimens of P. bicanaliculata settle out of the plankton in about three weeks, 4 mm or less in length. They quickly grow to about 10 mm long, and overwinter at this size. In spring they grow to adult size (Figs. 6A, 7A ; Roe, in preparation).

Since P. bicanaliculata is the major prey organism of both mud flat P. peregrina populations, densities of this species were most carefully and frequently determined. Figures 6 B and 7 B show densities through time. There are not such strikingly linear decreases in numbers at Sung Harbor as at Garrison Bay. When samples were divided into those with and those without algae, trends showed that P. bicanaliculata tends to be more abundant in algal covered areas than in bare mud,

Figure 6. A) shows the average size \pm one standard error of Platyncreis bicanaliculata, September. 1968 to March, 1970, at Snug Harbor. N is the number of worms measured: B) mean number \pm one standard error of Platyncrcis bicanaliculata/m² at Snug Harbor. The overall average number of Platynercis per m^{2} is 3218 . N is the number of samples taken. In August, 1969, young worms were collected and measured, but density was not determined.
although the numbers of samples in the two categories usually became too small to show significant differences (Koe, 1971). It was concluded that algal patchiness at Snug Harbor, not present at Garrison Bay, can account for the fluctuations. P. bicanaliculata is abundant in fall in both mud tlats, with numbers decreasing until summer (Figs. 6B, 7B).

Other prey in mud flats. Densities of Armandia brezis, Nereis zerillosa, and spionids were estimated from fewer samples than Platynereis; the estimates of average density thus do not reflect the patchy distribution of the three species. At Garrison Bay the average number/ m^{2} of spionids in 41 samples over four months was 76.5 , the average number of A. breais in 75 samples in seven months was $1+3$, and the average number of N. zerillosa in 49 samples in eight months was 3.3 (Roe. 1971 for data for each month). At Snug Harbor averages/ m^{2} were: Scolelepis fu'iginosa, 119 in 87 samples over three months; A. breais, 313 in 112 samples in seven months : N. z'e.rillosa, 21.5 in to samples over eight months. At Edmonds, densities were difficult to compare since large barnacles provide fewer (but larger) cracks to live in than do snall ones, and different polychaetes occupy each type of

Figure 7. A) shows the average size \pm one standard error of Platynereis bicanaliculata February, 1969 to November, 1969, at Garrison Bay. N is the number of worms measured; B) mean number \pm one standard error of Platywercis bicanaliculata $/ \mathrm{m}^{2}$ at Garrison Bay, October, 1968 to March, 1970. N is the number of samples. All samples except June, 1968 ($100 \mathrm{~cm}^{2}$) were $20 \mathrm{~cm}^{2}$. Overall average number of Platyncreis $/ \mathrm{m}^{2}$ is 815.6 . In August, 1969, young nereids were collected and measured but density was not determined.
crack. Table II shows the number of prey/ml of barnacles and mussels. No polynoids were found in the barnacle and mussel samples for prey; however, 28 were eaten by specimens of P. peregrina in two years. Low densities of nereids are valid. Densities of Paleanotus are underestimates because they were not counted for several months and because they are difficult to see.

Fecding by Paranemertes peregrina
Fecding at low tide. P. peregrina is active som after being exposed by the receding water during lower low tides: seeking out, capturing, and eating polychaetes.

Nemerteans were collected immediately after leaving their burrows as the receding tide uncovered the mud flat. Faeces of these worms were collected, as well as

Table II
Estimated number of prey/ml of barnacles and mussels at Edmonds.

Substratum	Prey	Samples			
		Number of samples	Volume of samples, ml	Number of ргеу collected	Average number per $1,000 \mathrm{ml}$ substratum
Large barnacles	Syllids Boccurdia sp). Palcanotus chrysolepis Nereis cexillosa	$\begin{array}{r} 10 \\ 9 \\ 2 \\ 1 \end{array}$	$\begin{array}{r} 10,125 \\ 9,625 \\ 950 \\ 10,125 \end{array}$	$\begin{array}{r} 222 \\ 200 \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 21.9 \\ 20.8 \\ 5.3 \\ 0.1 \end{array}$
Medium sized barnacles	Syllids Boccardia sp. Paleanotus chrysolepis Nereis rexillosa	$\begin{aligned} & 4 \\ & 4 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 1,950 \\ 1,950 \\ 250 \\ 1,950 \end{array}$	$\begin{array}{r} 43 \\ 311 \\ 12 \\ 3 \end{array}$	$\begin{gathered} 22 . \mathrm{t} \\ 159.5 \\ 48 \\ 1.5 \end{gathered}$
Small barnacles	Syllids Boccardia sp. Paleanotus chrysolepis Platynere is bicanaliculata	$\begin{aligned} & 8 \\ & 8 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 4,300 \\ 4,300 \\ 50 \\ 4,300 \end{array}$	$\begin{array}{r} 169 \\ 608 \\ 2 \\ 1 \end{array}$	$\begin{gathered} 39.3 \\ 1+1.4 \\ 40 \\ 0.2 \end{gathered}$

faeces of worms collected about 1.5 hours aiter being uncovered by the receding tide, giving them time during the interval to feed. A significantly higher proportion of the latter had sncceeded in feeding : at Snug Harbor, 28 had fed soon after being exposed, 120 had not ; 96 had eaten and 77 had not after 1.5 hours exposure, $\chi^{2}=$ 44.99, $P<0.005$. At Garrison Bay, five had fed and 21 had not soon after being exposed ; seven had and 17 had not fed after 1.5 hours exposure, $\chi^{2}=0.660,0.5<$ $P<0.25$. At Edmonds two had fed and 13 had not versus 15 feeding and 19 not feeding after 1.5 hours exposure, $\chi^{2}=4.35, P=0.05$.

On the permanently marked areas at high tide periods when the substratum was under water, very few nemerteans were ever seen on the surface: an average of 0.01 worms was active $/ \mathrm{m}^{2}$ at Garrison Bay and an average of $0.03 / \mathrm{m}^{2}$ was active at Sung Harbor. Even if these averages are multiplied by 23, the average number of hours the mud flats are under water per day, densities are only 0.23 and 0.69 worm/ m^{2}, far lower than low tide densities (Figs. 4, 5). No worms were seen while diving at Edmonds. The nemerteans could be burrowing beneath the mud and capturing food, but in light of their "homing" behavior (see below), it is thought that they move little, muless disturbed, between exposure at low tides.

The artificial mud flat, rum for ten months without "low tides," showed that the 16 nemerteans in the experiment shrank. One large worm decreased from 570 mg weight and $475 \mathrm{~mm}^{2}$ in area to 226 mg and $1+2.5 \mathrm{~mm}^{2}$ from October to April; a second decreased from 638 mg and $388.5 \mathrm{~mm}^{2}$ to $28.3 .5 \mathrm{~mm}^{2}$ from October to March (not weighed in March). One group of smaller nemerteans decreased from average weights of 140 mg and average areas of $135 \mathrm{~mm}^{2}$ between October and August to 35 mg and $44.2 \mathrm{~mm}^{2}$. A second group decreased from average weights of 153 mg and average areas of $115 \mathrm{~mm}^{2}$ to $36.3 \mathrm{~mm}^{2}$ (not weighed) between October and August (Roe, 1971 for details). This decrease in size can be at-
tributed to decreased feeding when there are no low tides, since many nereids were added to the aquarium periodically. However, P. peregrina has been observed feeding under water. It was concluded that in nature P. peregrina feeds primarily when exposed at low tide, although feecling can occur at other times, as in September and March, when few tides are low enough to expose the nemerteans.

Length of actizity period. Many nemerteans are active during the first two hours after the tide recedes during months with daylight low tides, and during the first 2.5 hours in night low tides. Average density of active P. peregrina soon after the worms were exposed by the receding water during daylight tides was $3.3 / \mathrm{m}^{2}$, and after 1.5 hours, $1 / m^{2}$; at night in 1.5 hours, densities decreased from $4.5 / 11^{2}$ to $2.8 / \mathrm{m}^{2}$. (Counts were made in the same square meters earlier and later.) Activity is modified considerably by weather. Rain, snow, and strong afternoon sun reduce the numbers of worms out and the length of time any one worm stays out. At Snug Harbor (one night in November) density was $3.9 / m^{2}$ before it started raining, 1.4/m² shortly after ; density at Garrison Bay in March was $4.1 / m^{2}$ after dark, and only two nemerteans were seen on the whole mud flat during two afternoon low tides. March night tide and afternoon densities at Snug Harbor were 3.2 and $0.8 / m^{2}$, respectively.

Mozements. Recaptures of 48 nemerteans dyed with neutral red and put into three marked $1 \mathrm{~m}^{2}$ areas in September, 1968 at Garrison Bay showed: October, 32 recaptured, 67%; November, 12 recaptured, 25%; December, 5 recaptured, 10.4%; January, 2 recaptured. 4.2%; February, 1 recaptured, $2 \% ;$, pril, 1 recaptured, 2%; May, 1 recaptured. 2% 。

At Snug Harbor 14 red nemerteans were put into a $1 \mathrm{~m}^{2}$ plot in July, 1968. Results were: August, 6 recaptured, 42.9%; September, 2 recaptured, 14.3%; October, 1 recaptured, 7%; November, 1 recaptured, 7%.

Forty-nine red nemerteans were put into seven different marked $1 \mathrm{~m}^{2}$ areas along a transect at Sung Harbor in September, 1968. Of these, 12 were recovered in five areas after one month; six were recovered in five areas after two months; two in two areas after three months ; and four worms were collected in four respective square meters after five months. After five months, 4 ont of 49 animals were still in the same meter where they had been placed.

After two weeks, experimental areas at Snug Harbor cleared of nemerteans had approximately 50% as many worms as before. Clearing experiments suggest that nemerteans will move into empty areas rather quickly. However, on several occasions it was casually noted that nemerteans stayed active longer and crawled more where many bootprints were left in the mud. Clearing an area disturbed not only that area but also the ground around it, perhaps cansing worms in those areas to be more active than normal.

From Pielon, 1959, it is seen that when P. peregrina is active at low tide, individuals are randomly dispersed: at Snug Harbor the probability of random dispersion was >0.05 in October, $1968 ;>0.05$ in November, $1968 ;>0.05$ in June, 1970 and in a second sample in June, 1970. $\gg 0.05$. At Garrison Bay the probability of random dispersion was >0.05 in July, 1969 (see also Roe, 1971).

Indieidual fecding beharior. Feedling behavior of individual worms was observed both in nature and in artificial mud flats. The following is a synthesis of many observations. When the tide recedes at the beginning of a low tide period, the
nemerteans emerge from their burrows and search for fool. Most worms are out about 15 minutes after the water leaves an area (average time in 30 laboratory observations, 13.9 minutes). In the artificial mud flats (18 observations) worms crawled an average of 30 cm in 18 minutes in search of food. There is much variation in the distances traveled and speed of crawling.
P. peregrina searches haphazardly until it comes upon a nereid or a fresh nereid trail or tube. When contact is made with a trail it crawls along the trail, not always in the same direction as the nereid. It frequently loses the prey even if it comes upon the prey itself. The swimming-flipping escape response of nereids (Roe, 1970) is quite effective; contact with the nereid causes a flurry of motion, destroys the trail, and the nemertean sometimes loses the prey. P. peregrina was observed a few times to lift its head, swinging it back and forth across a trail. This behavior suggests that close-range chemoreception helps keep the nemertean oriented. P. percyrina has no distance chemoreception to aid in prey detection; it must bump into the prey or immediate surroundings of the prey with its head before it recognizes prey as prey. In the artificial mud flats P. peregrina spent an arerage of 17.8 minutes in randon crawling before finding a nereid trail, tube, or nereid, and another 23.7 minutes poking its head down worm tubes and chasing prey organisms. for a total search time of 41.5 minutes. Search time was terminated when the feeding process (Roe, 1970) started or when a nemertean started home, having found no food.

When prey is found, feeding takes only a few minutes. In the artificial mud flats average feeding time was 8.3 minutes; in nature, 7.3 minutes. It takes longer if a P. peregrina goes into a P. bicanaliculata tube to feed, and it takes much longer (over an hour) if one tries to eat a nereid much larger than itself.
P. peregrina seems able to eat only polychaetes that are at or very near the surface of the mud or those that have broad tubes. Maldanids, oweniids, lumbrinerids, and other abundant polychaetes having deep, vertical tubes with small diameters were not eaten by the nemertean.

After feeding, P. peregrina ustually backs up a few centimeters along the mucus trail it made during the search for food ; then it turns around and crawls on the trail until it reaches its burrow, where the nemertean disappears underground. Most individuals return to their former burrows after each meal ; they only make new burrows if part of the mucus trail was destroyed and they cannot find their way home.

The total time spent out at low tide looking for food, eating, and returning home averaged 41 minutes in the artificial mud flats and 43 minutes in nature for individual worms (not always the same observations as studied for crawling and searching).

Prey species and diversity of diet. Food preference experiments (Roe, 1970) indicated that behaviorally P. peregrina prefers to eat nereids over other polychaetes. (In this paper the word preference refers to what animals ate most often when given choices in laboratory experiments of Roe, 1970. The word sclectizity refers to wh. animals actually eat in nature.) Faecal analysis of worms in nature also showed that neweids are the major prey in areas where they are available (Table III).

Specimens of P. peregrina at both Snug Harbor and Garrison Bay mainly eat nereids thronghont the year (Fig. 8; Roe, 1971). In all three populations there is

Figure 8. Numbers of each prey eaten by Snug Harbor Parancmertes percgrina, April, 1968 to December, 1969.
a significant increase in feeding on spionids during the winter: at Snug Harbor between September and April they ate 39 spionids, $23+$ other prey; between May and August they ate 12 spionids, 257 other prey; $x^{2}=15.34, P<0.005$. At

Figure 9. Numbers of each prey eaten by Edmonds Paranemertes peregrina, May, 1968 to May, 1970.

Table III
Per cent of total diet comprised by each prey species.

Prey species	Snug Harbor	Garrison Bay	Edmonds
Platynereis bicanaliculata	80.0	68.4	1.6
Nereis vexillosa	2.6	3.5	2.7
	6.7	4.1	
Total Nereidae	89.3	76.0	4.3
Spinoids	9.4	18.1	43.1
Ophiodromus pugettensis	0	5.1	0
Armandia breais	0.9	0.9 **	0
Paleanotus chrysolepis	0	0	20.8
Polynoids	0	0	15.3
Typosyll is	0	0	14.7
Unknown*	0.4	0	1.6
Total	100.0	100.1	99.8
Total number prey	542	216	183

[^1]Garrison Bay between October and February they ate 31 spionids and 80 other prey; between March and September, 6 spionids, and 91 other prey; $\chi^{2}=16.73$, $P<0.005$. It Edmonds between September and February they ate 67 spionids and 27 other prey; between March and August they ate 12 spionids and 78 other prey; $\chi^{2}=62.99, P<0.005$.

Small numbers of Armandia and Ophiodromus pugcticnsis are also eaten at Snug Harbor and Garrison Bay, especially in summer (Fig. 8; Table III). At Edmonds Paleanolus and polynoids replace spionids as the major prey during summer. Syllids (Typosyllis sp.) are eaten throughout the year (Fig. 9; Table III) at Edmonds.

Using Pielou's (1966) diversity index, it was found that at Edmonds, preyspecies diversity is significantly higher in summer $\left(H^{\prime}=1.39 \pm 0.02\right)$ than in winter $\left(H^{\prime}=0.89 \pm 0.0+\right)$ at the 95% level. At Garrison Bay prey-species diversity is essentially the same in summer $\left(\mathrm{H}^{\prime}=0.66\right)$ and in winter $\left(\mathrm{H}^{\prime}=0.64\right)$. At Snug Harbor summer months show a significantly lower diversity $\left(H^{\prime}=\right.$ 0.30 ± 0.01) than winter months when many spionids are eaten ($\mathrm{H}^{\prime}=0 .+4 \pm 0.03$) at the 95% level. Prey-species diversity is higher at Edmonds than at Garrison Bay and higher at Garrison Bay than at Snug Harbor.

Electivity. Electivity coefficients (Ivler, 1961) of all prey species whose relative densities in nature are known indicate that at Sung Harbor and Garrison Bay specimens of P. percgrima eat nereids abont as often as they come into contact with them (electivity coefficient for Snug Harbor, +0.01 ; for Garrison Bay, +0.10), that they select spinoids $(+0.70$ and +0.51$)$, and that Armandia is usually passed by (-0.81 and -0.85). At Garrison Bay Ophiodromus is also usually passed by (-0.61). Actually, nereids are probably sought out soon after P. pere-
grina is uncovered by the receding water of low tide when the nemerteans are hungry but are more likely than other species to be passed up later in the low tide period when the nemerteans have already fed, simply becanse nereids are so much more abundant than other species.

At Edmonds, Palcamotus $(+0.16)$ and nereids $(+0.87)$ are selected, Typosyllis (-0.24) is not, and Boccardia is eaten as it is encomtered in winter (-0.005) and in cracks between small barnacles where it is very common (-0.01) and is eaten less often than encountered in cracks of large barnacles (-0.32). The high electivity for Palcanotus is probably a function of underestimating Palcanotus densities. Four feeding experiments suggested that Parancmortes will not often accept Paleanotus.

Natural history and escape responses. Although electivity shows mathematically what prey P. percgrina selects, this coefficient is not nearly sufficient to explain feeding patterns. Behaviorally, P. pergrina strongly prefers nereids to all other prey (Roe, 1970), yet electivity values of mud flat populations indicate little selectivity. Natural history of prey, and prey behaviors, as escape responses, are important in determining prey availability. Densities alone are insufficient for molerstanding availability.

At Smug Harbor during low tides on hot summer days specimens of P. peregrina were feeding almost exclusively on Armandia breais. (In all observations on feeding 21 specimens of 1 . bracis were seen being eaten, plus four attempts by nemerteans to eat Armandia.) However, A.breais is less than 1% of the nemertean diet there (Table III). A. brais, a normally active animal, has a highly effective flipping. swimming escape response to touch. Only on hot summer days when the low tide is in early afternoon can P. peregrina catch Armandia, slnggish from heat stress. Availability of this prey is, therefore, temporally highly patchy.

At Garrison Bay P. peregrina canght and ate juvenile Ophiodromus in stmmer. Ophiodromus as an adult makes P. peregrina turn another direction upon contact and not even attempt to eat it. Juseniles are only present in summer.
P. peregrina tries to feed on Nereis verillosa about as frequently as on Platynereis. However, faecal analysis shows that N. qexillosa comprises only 2.6% of the food actually eaten versus 80% being Platyncris (Table III, Sung Harbor). Food preference tests (Roe, 1970) showed that it is harder for the nemerteans to finish the feeding process with N. a'erillosa as prey. I'resent studies confirm this; over half of the observations on feeding in mature were not completed (P. peregrina ate nine nereids but (id not complete feeding on 11 others in 20 observations). N. z'e.rillosa has several escape mechanisms making it less available. It escapes in size from P. percgrina twice in its life span. When tiny (3 to S segments), it is potential prey for one to two month old nemerteans only; adult nemerteans do not notice prey this small. However, it quickly grows to a size that the slower growing young nemerteans camot handle. During the first year of the nereid's life span, after it reaches a size to be noticed by larger nemerteans, it is a size that P. peregrina can eat. In the second year (Roe, in preparation) the nereids grow too large in diameter for the nemerteans to ingest. These large nereids also usually recover from the paralytic effects of the toxin injected into them during unsuccessful attempts by P. peregrina to feed on them. N. verillosa also displays the typical swimming escape response of nereids to P. peregrina (see Roe, 1970). This escape response is in effect thronghont life; a three-segment Nereis showed response to touch by a
larval Parancmertes 0.3 mm in length. Large nereids show aggressive behavior toward specimens of P. percgrina: instead of just trying to escape, they sometimes bite their attackers. If a nereid bites a nemerteans's proboscis, the nemertean cannot draw the proboscis back within its rhynchocoel, and feeding, if successful at all, takes much time. Finally, N. verillosa tends to become active at the end of a low tide period when water is beginning to cover the mud. As this is the time when nemerteans have already fed and are returning home, the nereid activity period becomes a protective device.

Platynereis bicanaliculate is the major prey of P. peregrina where it is common. It is in the preferred food family, and it has only the flipping-swimming escape response. This behavior is much more effective at high tide, and P. peregrina usually succeeds in capturing Platynereis at low tide. It is suggested that P. perefirina has evolved to do most feeding when low tides expose the substratum because the nereid escape response is less effective when the nereid can only flip a few centimeters than when it can swim away. P. bicanaliculata is of a size range suitable for eating thronghont the year (Figs. 6A, 7A). It was never observed to fight back when struck by a memertean. Syllids are difficult for P. peregrina to ingest even thongh they are small (Roe, 1970).

The difference in feeding in all three populations on spionids in winter and summer must be due in part to hehavioral differences that make spionids more available in winter. Densities of spionids are ronghly the same in both seasons (my observations for Sung Harbor, confirmed by S. A. Woodin, Johns Hopkins University, in personal commmictaion), and nemerteans strongly preferred nereids in food preference tests run during winter (Roe, 1970).

Time tuken for passage of food through the gut. Defecation usually occurs 18-20 hours after feeding (see also, Roe, 1970; Gibson, 1970), so faecal samples obtained from worms of a given tidat period represent feeding that occurred during that same tide.

Fecding time through a tide series. Worms were collected every day over four to sin days, when lower low water level mosered them: presence or absence of faeces of worms collected on early or on later days during a low tide series showed no significant differences in mumbers of worms feeding at the beginning and at the end of the tide series (Suug Harbor: days 1-2, 19 fed, 69 did not; days 5-6, 9 fed, 45 did not ; $x^{2}=0.512$. Edmonds: days $1-2$, 7 fed, 11 did not; days $3-4,8$ fed, 11 did not: $x^{2}=0.037$). It was concluded that in general P. peregrina feeds about every day if it can find prey.

Fecding per conts through the year. At Snng Itarbor an average of 66.5% of the population ate per low tide during night low tides (September to January, 149 of 224 worms collected had eaten). During daylight low tides of April to July an average of 33.1% ate during a low tide (199 of 401 worms collected). At Garrison Bay during night low tides of September to January an average of 44.5% (85 of 191 collected) ate per low tide. In daylight tides of April to July an average of only 16.4% (46 of 279 collected) ate per low tide. At Edmonds daytime and night patterns were less striking; the overall feeding rate was 38.6% (183 of 474 worms collected). (See Roe, 1971, for details for all 3 populations.)

Since nereids have jaws, the number of prey eaten per nemertean can be determined from faecal analysis. At Snng Harbor during night low tides of September
to March an average of 19.5% (42 of 21.3 woms collected), and during daylight tides of April to Augnst 12.3% (19 of 155) of the nemerteans which had fed had eaten more than one prey item while exposed at a given low tide. At Garrison Bay during night tides of August to March an average of 11.4% (16 of $1+1$ collected), and during daylight tides of April to July, none of the feedings were multiple. Comparable data are umavailable for the Edmonds population since few prey had markers to distinguish between two similar-sized prey of the same species.

Marimum fecdings rate. From laboratory feeding experiments in which 12 nemerteans were fed as many individuals of P. bicanaliculata as they would eat per day (experiments lasted varying lengths of time) and information derived from the numbers of nereids eaten per day by the three juseniles grown in the laboratory for $6-18$ months, it was determined that an individual P. peregrina eats 0.83 to 0.95 polychaete per day, if prey is available.

Size of prey caten. More detailed studies of feeding on P. bicanaliculatu were done since prey sizes could be determined by measuring jaws in faeces. A linear regression of nereid length to jaw length is significant (length $=31.9$ jaw length $-5, F=249.27, P<0.005$). During most of the year there was no significant correlation or linear regression between nemertean size and the size of P. bicanaliculata eaten. Data were divided into seasons corresponding to the three size categories of P. bicanaliculata (Fig. 6A). Results show: late Angust to early September, $\mathrm{r}=0.803, N=12, P=0.001$; October to March, $r=0.201, N=72,0.1>P>0.05$; April to July, $r=0.08+, N=67, P>0.1$. In August a few large individuals of P. bicanaliculata are still arailable as food, and new recruits are small enough (about 4 mm long) to escape notice of larger nemerteans. So for a brief time, one sees large nemerteans usually eating last year's adult prey and nemertean recruits eating nereid recruits. But, by early October, no adults of P. bicanaliculata remain and recruits have grown large enough ($10-12 \mathrm{~mm}$, Fig. 6A) for all nemerteans to eat.
P. pergerina tended to eat more of the larger prey than the smaller ones during fall and winter when nereids are generally small. Significant differences between sizes eaten and sizes available were determined using Student's t-test, with the following results: early September, $1968, t=2.309,0.05>P>0.025$; late September, 1968, $t=0.190,0.10>P>0.05 ;$ November, $1968, t=2.222,0.05>P>0.025$; January, $1969, t=1.742,0.10>P>0.05 ;$ March, 1969. $t=3.518,0.001>P$; April, 1969, $t=0.848,0.5>P>0.4 ;$ May, 1969, $t=1.306,0.2>P>0.1$; December, $1969, t=1.123,0.3>P>0.2$.

Individuals of P. peregrina that had eaten more than one prey during a low tide were not significantly larger than those that had eaten only one prey. T-tests of the two groups of nemerteans gave the following results: late August to early September (a 2-3 week period), $t=0.60,0.6>P>0.5$; late September to March, $t=0.35,0.8>P>0.7$; April to early August, $t=0.02,0.9>P>0.8$.

The average size of P. bicanaliculata eaten in multiple feedings was not significantly different from the average size eaten in single feedings. Jaw sizes of nereids from multiple feedings and from single feedings were compared using t-tests : late August to early September (a 2-3 week period), $t=1.17,0.3>P>$ 0.2 ; late September to March, $t=0.83+, 0.5>P>0.4$; April to early August, $t=1.75,0.1>P>0.05$.

Table IV
Estimuted number of each species eaten by Paranemertes peregrina per square meter per year and per cent of each population consumed.

* Numbers $/ 1,000 \mathrm{ml}$ were multiplied by 50 to get an estimate of numbers $/ \mathrm{m}^{2}$.
** In samples of large barnacles.
*** In samples of medium-sized barnacles.
**** In samples of small barnacles.
Estimated number of prey catcn by P. peregrina. The direct effect of P. peregrina on prey species is to reduce their nmmers. The estimate of the average number of prey eaten by specimens of P. perigrina per $m n^{2}$ per year was calculated to be $5+6.5$ at Snug Harbor and 411.1 at Garrison Bay. At Edmonds the minimum estimate (585.1 prey $/ \mathrm{m}^{2} / \mathrm{yr}$) was considered most correct (see Roe, 1971, for details and methods of calculating these figures). Table IV shows the number of individuals of each species eaten per year per m^{2} and what per cent of the available prey population is eaten by the nemerteans per year. These figures are reliable for all speimens of P. bicanaliculata, N. recrillosa at Snug Harbor, and spionids and syllids at Edmonds. Densities of spionids at Snug Harbor and Irmondia at Snug Harbor and Garrison Bay are probally fairly correct.

Discussion

Although life histories of two populations of this nemertean were similar, spawning periods were different in all three populations. Spawning must be associated with local events. Larvae of P. percgrina can survive at least eight weeks without food, or they can start feeding within a month after being spawned. One month old nemerteans indicated that they, like adults, show a strong preference for nereid prey. N'. veerillosa spawns from March through August (Roe, in preparation). but the egg masses are patchily distributed and the three-segmented young quickly outgrow very young specimens of P. peregrina. P. bicanaliculata is probably the main food
somre for very young nemerteans; it is temporally predictable and abmudat. The timing of nemertean spawning has probably evolved to coincide closely enough with its major prey's spawning that the tiny nemerteans find food sometime within their first two months of life. Some individuals of P. bicanaliculata spawned in late June at Garrison Bay, whereas nearly all at Sung Harbor did not spawn until Angust; nemerteans spawn later at Snng Harbor than at Garrison Bay. Spionid larvae are in the plankton thronghont spring and summer and might also be a food source, especially for the young at Edmonds.

Feeding is a most important activity for any animal. For predators that pursue relatively large prey, the most adaptive strategy is to specialize when food is abundant but become less specialized when food becomes scarce (Emlen, 1966; Mac Arthur and Pianka, 1966 ; Ivlev, 1961).
P. peregrina is a pursuer, spending on average 18 minntes haphazardly searching for prey, and $2+$ more minutes in pursuit of prey or in poking its head down prey tubes.

This study of P. peregrina allowed predator strategy theories to be tested by comparing behavior of the same species in areas varying greatly in abundance of preferred nereid food. Snng Harbor had an aserage of 3240 nereids $/ \mathrm{m}^{2}$, Garrison Bay, S19/m², and Edmonds, abont $28 \mathrm{~m}^{2}$ (Figs. 6B, 7B; Table II). At Sung Harbor the preferred nereids constituted 89% of the diet, and there were two minor prey. At Garrison Bay nereids comprised 76% of the diet, and there were three minor prey groups. Spionids were relatively more important, comprising 18% of the total. And, at Edmonds, nereids comprised only 4.4% of the diet, with spionids increasing to 43% and diversity of prey increasing to five families (Table 11I).

At Sung Harbor a higher proportion of the nemerteans fed during low tide periods (overall feeding average of 42.8%), and a greater number of nemerteans ate more than one prey per low tide period (overall average of 16.9%) than at Garrison Bay (overall average feeding of 30.5%) with 9.6% being multiple feedings over the year. At Edmonds 38.6% of the nemerteans sampled during low tide periods had fed. From the proportion of nemerteans feeding. Snug Harbor appears to be the best of the three areas for P. peregrina. And, although prey are abundant at Edmonds, preferred prey are not; adult nemerteans there are far smaller than adults at either mud flat areas (Fig. 1A, B; Roe, 1971). It appears that the preference P. peregrina shows for nereids reflects a long evolutionary association with these prey with a correlated greater efficiency in capturing or assimilating them to other species. The Edmonds population may be food-limited in spite of a seeming prey abundance.

Seasonal feeding patterns exist within each population. At Sung Harbor preyspecies diversity is significantly higher from September to March than April to August. This appears contradictory to prediction, as P. bicanaliculata arerages $6000,11^{2}$ in winter and only $260 / 1^{2}$ in summer (Fig. 6B), and the per cent of P. peregrina feeding per low tide period in winter was greater (67%) than in summer (33%). However, P. bicanaliculata indivicluals are two to three times as large in linear dimensions in smmmer as in winter, and some are ripe females; both factors enhance the food energy per prey individual consumed in summer. Since all three populations of nemerteans did eat spionids in fall and winter, it appears that P. peregrina is to a limited extent an opportunist. Another suggestion of
opportumism is the observation that Armandia was eaten in large numbers when the Armandia individuals were sluggish. P peregrina may consume a less abundant, less preferred food in spite of an abundance of preferred nereids if the less preferred food becomes easily available.

The direct effects of predators on their commmities are those they have on their prey populations (c.g., Comell, 1961, 1970). Indirect effects are observed when changes in prey populations cause further alterations in community structure, changing abundances and diversity among organisms not directly affected by the predator (c.g., Paine, 1966; Dayton, 1971).

Direct effects of P. percyrina are in lowering prey densities and in lowering reproductive potentials of prey species. From estimates of the feeding rate of P. peregrinu and of prey densities, it was found that on mud flats P. peregrina eats $1+-35 \%$ of the standing crop of P. bicanaliculata per year (Table IV ${ }^{\top}$). At Snug Harbor P. bicanaliculata is so mumerons this 14% probably has little effect on reproductive capacity. At Garrison Bay, where nemerteans crop 35% per year, few nereids reach maturity; and even though each surviving female released thousands of eggs, recruitment was considerably lower than at Snug Harbor (Figs. 6B, 7B).

Whether P. peregrina has important indirect effects on its communities is a function of its prey; it is only when the major prey is the superior competitor for a basic resource that indirect effects of predation are strongly felt throughout the community (Paine, 1969).

At Snug Harbor, P. bicamalicu'ata is a major holder of the limited space available (Woodin, 1974). Significant reduction of nereid mumbers allows larger numbers of Armandia and Ariothclla (maldanid) to survive (Woodin, 1974). By heavy predation on P. bicunaliculata, P. peregrina can help maintain densities of other polychates in its communities. At Garrison Bay polychaete diversity is higher than that at Snug Harbor; this may in part be a result of the nemertean's cropping more of the nereid population there.

I wish to thank Dr. Alan Koln for much help and encouragement throughout this study, and Drs. A. I. Kohm, P. L. Illg, and R. T. Paine for helpful criticism of the manuscript. Dr. R. L. Fernald provided space and facilities at the Friday Harbor Laboratories. Drs. M. Lloyd, S. Woodin, and K. Banse helped with polychaete identifications: and Dr. R. Vance gave statistical advice. S. Woodin provided general information about the polychaete fauna at Snug Harbor. I wish to thank also Mr. and Mrs. Jack Pierce and Mr. and Mrs. R. C. Schwarz for letting me use their properties during my studies.

Sumpary

In Washington State, Paranomertes peregrina spawns in spring and summer, with minor spawning periods in fall. Juveniles from spring spawning are first easily seen the following fall, when the population consists of both adults and juveniles. Thronghont winter adults die and juseniles mature, becoming ripe for the spring and summer spawnings. These adults die the following winter; the life span is thus 1.5 to 1.75 years.
P. peregrinu feeds exchusively on polychaetes: at both mud flats Platynercis bicanaliculdu, an annual, was abundant and the dominant prey organism.

Observations in nature and in artificial tidal flats constructed in the laboratory permitted study of foraging behavior and activity patterns. P. peregrina emerges from its burrow when exposed by the receding tide and searches haphazardly until it contacts acceptable prey. After contact, feerling takes seven to eight minutes. Then P. peregrinu returns to its burrow by following its own mucus trail. Individuals often remain within a one meter radius for several months. Maximum feeding rate was detemmed in laboratory studies to be $0.8-0.95$ prey individual per day.

In two intertidal mud flats and one rocky area, testing of predator strategy models and effects of predation on prey populations showed that in all three areas the percentages of nereids in the diets of P. peregrina were directly proportional to nereid density. Prev-species diversity was inversely proportional to nereid density: P. peregrina ate a significantly greater number of spionids during fall and winter than during spring and summer. Armandia breais was also eaten by mud flat populations in summer, as was Opliodromus pugettensis in one area. Polychaetes of five families comprised the diet of the nemerteans in the rocky area. Escape responses strongly affect prey availability: On mud flats P. peregrina tends to select P. bicanaliculata larger than the mean size available during fall and winter when P. bicanaliculata is small ; larger nemerteans do not select larger prey than do small ones.
P. peregrina crops $1+-35 \%$ of the P. bicanaliculata population per year, and probably somewhat higher proportions of Nereis a'cxillosa and spionid populations. At the location where predation on nereids was more intense, their recruitments were lower. By heary predation on Platynereis, P. peregrina may help maintain densities of other polychaetes in its commmities.

LITERATURE CITED

Coe, W. R., 1940. Revision of the nemertean fauna of the Pacific coasts of North, Central, and northern South America. Allan Hancock Pac. Exped., 2 : 247-323.
Coe, W. R., 1943. Biology of the nemerteans of the Atlantic Coast of North America. Trans. Connccticut Acad. Arts Sci., 35 : 129-328.
Connell, J. H., 1961. Effects of competition, predation by Thais lapillus and other factors on natural populations of the barnacle Balanus bulanoides. Ecol. Monogr., 31: 61-10t.
Connell, J. H., 1970. A predator-prey system in the marine intertidal region. 1. Balanus glandula and several predatory species of Thais. Ecol. Monogr., 40 : 49-78.
Davton, P. K., 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr., 41 : 351-389.
Emlen, J. M., 1966. The role of time and energy in food preference. Amer. Notur., 100: 611617.

Gibson, R., 1970. The nutrition of Parancmertes peregrina (Rhynchocoela: Hoplonemertea). 11. Observations on the structure of the gut and proboscis, site and sequence of digestion, and food reserves. Biol. Bull., 139: 92-106.
Govor, J. J., 196t. Structure and function of the digestive system of Aglaja diomedea Bergh, a marine snail (Opisthobranchia, Cephalaspidea). Ph.D. Thesis, Lnizersity of W'ashington, Scattle, Washington, 254 pp.
Irley, V. S., 1961. Experimental ccology of the feeding of fishes. New Hlaven, Yale Univ. Press, 302 pp. [Tr. from Russian by Douglas Scoll.]

MacArthur, R., and E. R. Pianka, 1966. On optimal use of a patchy enviromment. Amer. Natur., 100: 603-609.
Paine, R. T., 1966. Food web complexity and species diversity. Amer. Natur., 100 : 65-75.
Paine, R. 'T., 1969. A note on trophic complexity and commmity stability. Amer. Natur., 103: 91-93.
Pielou, E. C., 1959. The use of point-to-point distances in the study of patterns of plant populations. J. Ecol., 47 : 607-614.
Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol., 13: 131-14t.

Roe, P., 1970. The nutrition of Paranemertes peregrina (Rhynchocoela: Hoplonemertea). I. Studies on food and feeding behavior. Biol. Bull., 139: 80-91.
Roe, P., 1971. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Ph.D. Thesis, Uniacrsity of W'ashington, Seattle, Washington, 129 pp.
Woodin, S. A., 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecol. Monogr., 44: 171-187.
Vamaoka, T., 1940. The fama of Akkeshi Bay. IX. Nemertini. J. Pac. Sci. Hokkaido Imp. Univ. Series 6, Zool., $7: 205-263$.

[^0]: ${ }^{1}$ Present address: Department of Biological Sciences, California State College, Stanislaus, Turlock, California 95380.

 2 This work was supported in part by the Friday Harbor Laboratories and NSF Grants GB-6518X and GB-20978 to the Department of Zoology, U'niversity of Washington.

[^1]: * In these samples there were too few setae or some other reason which made species identification unreliable.
 ** These setae were tentatively identified as Armandia; they might conservatively be placed nuder "unknowns."

